§4.1—Antiderivatives & Indefinite Integration

Suppose we have a function F whose derivative is given as $F'(x) = f(x) = x^2$. From your experience with finding derivatives, you might say that F(x) = WHAT???? How can you check your answer?????

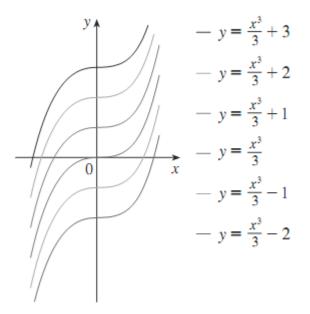
Congratulations, you have just found an antiderivative, F, of f.

Definition

A function F is an antiderivative of f on an interval I if
$$F'(x) = f(x) \quad \forall x \in I$$
.

Notice that F is called AN antiderivative and not THE antiderivative. This is easily understood by looking at the example above.

Some antiderivatives of $f(x) = x^2$ are $F(x) = \frac{1}{3}x^3$, $F(x) = \frac{1}{3}x^3 + 3$, $F(x) = \frac{1}{3}x^3 - 2$, and $F(x) = \frac{1}{3}x^3 + \pi$ because in each case, $\frac{d}{dx} [F(x)] = x^2$.



Because of this we can say that the **general antiderivative** of a function f(x) is

F(x)+C, where C is an arbitrary constant.

The graph at right show several members of the family of the antiderivatives of x^2 .

WHAT GRAPHICAL CONSEQUENCE DOES THE +C HAVE ON THE SOLUTION CURVES?

Example 1:

Find the general antiderivatives of each of the following using you knowledge of how to find derivatives.

(a)
$$f(x) = 2x$$
 (b) $f'(x) = x$ (c) $F'(x) = \frac{2}{3}x^{\frac{4}{7}}$ (d) $g'(x) = \frac{1}{x^2}$ (e) $\frac{dy}{dx} = \cos x$

Knowing how to find a derivative of different types of functions will help you find antiderivatives.

Table of Antiderivative Formulas			
Function	General antiderivative	Function	General antiderivative
cf(x)	cF(x)+C	$\csc^2 x$	$-\cot x + C$
$f(x) \pm g(x)$	$F(x) \pm G(x) + C$	sec x tan x	$\sec x + C$
$x^n, n \neq -1$	$\frac{1}{n+1}x^{n+1} + C$	$\csc x \cot x.$	$-\csc x + C$
$\frac{1}{x}$	$\ln x + C$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x + C$
e^{x}	$e^x + C$	$\frac{1}{1+x^2}$	$\tan^{-1}x + C$
$\cos x$	$\sin x + C$		
$\sin x$	$-\cos x + C$	$\frac{1}{x\sqrt{x^2-1}}$	$\sec^{-1} x +C$
$\sec^2 x$	$\tan x + C$		

Table of Antiderivative Formulas

Example 2:

Find all functions g such that
$$g'(x) = 4\sin x + \frac{2x^4 - \sqrt{x} + x}{x} - \frac{7x\csc^2 x + 1}{x}$$
.

Definition

A differential equation is an equation that has a derivative in it. Solving a differential equation involves finding the original function from which the derivative came. The general solution involves +C. The particular solution uses an initial condition to find the specific value of C.

Example 3:

Solve the differential equation $f'(x) = 3x^2 + 1$ if f(2) = -3. Find both the general and particular solutions.

Example 4:

Find the particular solution to the following differential equation if $\frac{dy}{dx} = e^x + 20(1+x^2)^{-1}$ and y(0) = -2.

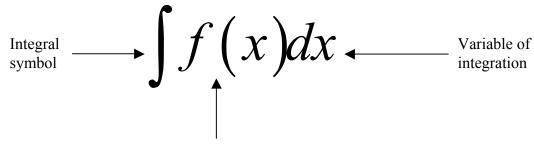
Example 5:

Find the particular solution to the following differential equation if $\frac{d^2y}{dx^2} = 12x^2 + 6x - 4$ and (a) y'(1) = 3 and y(0) = -6 (b) y(0) = 4 and y(1) = 1. When we are asked to take the derivative of an expression, we have the verb notation

$$\frac{d}{dx} \left[f(x) \right] =$$

We now need an equivalent verb expression that indicates that we find the antiderivative. It is called the indefinite integral.

Here's the anatomy of an indefinite integral:



*Because the indefinite integral gives the antiderivative, integration and antidifferentiation are mathematical synonyms, and an indefinite integral is equivalent to a general antiderivative.

Sometimes we need to manipulate our integrand into something more recognizable.

Example 6:

Evaluate each of the following:

(a)
$$\int \left[\frac{5\sqrt{1-x^2}}{3-3x^2} \right] dx$$
 (b) $\int \frac{\sin t}{\cos^2 t} dt$ (c) $\int (\tan^2 p + 4) dp$

(d)
$$\int 3\cos^2\left(\frac{m}{2}\right) dm$$
 (e) $\int z^3 (3-2z)^2 dz$ (f) $\int \left[\frac{x^2-5x-14}{x-7}\right] dx$